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Jośe C Ciria† and C Giovannella†‡
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Abstract. This review deals with the static properties of classical Josephson arrays. We first
comment on the model describing the system, both in the phase representation—the frustratedXY
model—and in the vortex representation—the Coulomb gas model. Self-induced magnetic fields
and disorder are added so as to faithfully reproduce physical systems. A review of scaling theory
concerning theI–V curve—which provides relevant information about, for example, the proximity
of a phase transition—is given in order to compare theoretical predictions with experimental results.
Josephson arrays are characterized by an extremely rich phase diagram as a function of both external
parameters (temperature, applied magnetic field) and inherent ones (disorder, self-inductance).
Such a diagram is explored in the light of recent results. Questions such as those of the nature of
the ground state and the stability of the static states, and the existence of a disordered vortex state
due to disorder intrinsic to the array and/or to external influences arise.

1. Introduction

Arrays of classical Josephson junctions (JJAs)—i.e. arrays where quantum effects are
negligible—have been the object of an intense research effort in the last few years. The
study of their properties is prompted by a wide range of stimuli. Many different areas of
interest converge in this field: many-body problems, complex frustrated and/or disordered
systems—exhibiting turbulence, chaos transitions etc—critical phenomena etc. Their possible
technological applications as components of cryoelectronic devices are also relevant [1,2].

Classical Josephson arrays are described in terms of 2π -periodic variables defined at
the lattice sites (θi), whose instantaneous values (i.e. orientations) depend strongly on the
interaction of the site with its nearest-neighbour ones.θi is the phase of the superconducting
wave function of islandi. They are isomorphic to an ensemble of spins free to rotate in
theX–Y plane. Frustration is introduced in the model through variables defined at the links
(aij , related to the potential vector of the magnetic field). An appropriate choice of gauge allows
one to identifyθi andaij with irrotational and solenoidal fields, respectively. An alternative
description of the system is based on gauge-invariant variablesφij = θi − θj − aij .

As a different approach, one may concentrate instead on the plaquette-like variables
(vortices and antivortices, which correspond to quantized fluxoids), so that the system can
be mapped onto the so-called Coulomb gas model.

Long-range coupling between the fields can be introduced (reflecting the physical fact of
magnetic inductance). Furthermore, intrinsic and extrinsic perturbations can be implemented
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in a natural way (disordered geometry or local defects, applied magnetic fields, temperature
fluctuations etc).

In this way, one can add more and more complexity to the initial system. All of these
features find related counterparts in many different physical systems. Josephson arrays are
physical realizations of theXY model where frustration, long-range interactions, disorder and
external perturbations are naturally present; the ensemble of gauge-invariant phases can be
straightforwardly mapped onto an array of coupled non-linear oscillators (admitting short- and
long-range interactions); the description in terms of vortices/antivortices can be visualized as
a system of interacting charges.

In nature there exist several realizations of planar spin systems or Coulomb gas systems,
but many researchers preferred to focus their attention on the JJAs. This is because, thanks to
the modern lithographic processes, it is possible to fabricate arrays with thousands of junctions
whose parameters can be fixed with a high precision; the development of low-cost and powerful
workstations and the improvement of more and more sophisticated experimental apparatus are
other factors that contributed to the explosion of the subject. Reliable fabrication processes
have been fundamental to control, i.e., the coupling strength, the amount and kind of disorder
etc. Numerical simulations of the statical and dynamical properties of relatively large arrays are
essential in order to interpret the measurements and, often, to suggest new experiments. Most
numerical results would have been ‘virtual reality’ without the development of, for example,
the very sensitive Bitter decoration and scanning SQUID or STM apparatuses that allow one
to obtain ‘WYSIWYG’ pictures of the arrays and to confirm theoretical predictions.

On the other hand, the discovery of superconductivity at high temperature [3] held out
a renewed inducement to the study of Josephson junction arrays. In fact, high-temperature
ceramic superconductors, either in their polycrystalline form (that can be schematized by a
disordered array of grains connected through point junctions [4]) or in their crystalline form
(where, especially for the case of the most anisotropic materials, it has been possible to observe
effects that are explainable as the coherent action of an ensemble of stacked junctions [5]),
behave in several respects like arrangements of intrinsic junctions. In particular, properties such
as continuous current conductivity, magnetic response or microwave absorption and generation
can be understood in terms of the physics of weak couplings.

The study of the intrinsic Josephson effect is essential to the full understanding of the
superconductivity mechanisms in high-Tc materials (see, for recent examples, [6]) and this
effect is frequently invoked in the theoretical description of such systems [7]. Moreover, one
of the features that make high-Tc superconductors especially hard to deal with is the strong
effect of thermal fluctuations and defects, which results in a rather complex phase diagram.
Josephson arrays appear again as suitable model systems for the modelling and comprehension
of their behaviour.

In the recent past we have already devoted a review and a tutorial paper to the dynamical
properties of a single vortex and to those of the ensembles of locked vortices [8]. Here, instead,
we intend to give a (necessarily very simplified) overview of some recent works on the static
properties of the arrays. Questions such as those of the nature of the ground states and their
dependence on the physical parameters, and the description of the extremely rich phase space
as a function of temperature (T ), disorder (x), the applied magnetic field (f ) etc will arise.

The review is organized as follows.
In sections 2 and 3 we review the theoretical background needed to describe the static

properties of the JJAs. First, in section 2, we define the discrete JJA Hamiltonian and
briefly comment on related models. Then we compare the discrete systems to the case of
the superconducting thin films, pointing out results of general validity and differences. The
mapping between the JJA Hamiltonian and Coulomb gas Hamiltonian is then presented.
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In section 3 we complete the theoretical background, reviewing those elements of the
scaling theory which are useful for extracting relevant information from experiments, and
for comparing their results with theoretical predictions.

Section 4 is devoted to the discussion of the stable static solutions of the array; in
particular, we will consider the ground-state problem. After a quick survey of the case of the
superconducting thin film, we discuss in detail the problem of the ground-state configuration
of the vortices when the JJAs are subjected to an external magnetic field. The section ends
with a paragraph devoted to the problem of the stability of the different states.

In section 5 we make a point regarding the characterizing of the phase diagram of JJAs as a
function of temperature (T ), disorder (x), the applied magnetic field (f ) and the anisotropy (η).

2. The discrete ‘JJ array formalism’

2.1. The discrete JJA Hamiltonian

A Josephson junction array consists of a lattice of superconducting grains, connected to their
nearest neighbours through Josephson junctions. The Hamiltonian of the system is given by

H = EJ
(∑

ij

(1− cosφij ) +
1

2

∑
p,q

8ind;p3−1
p,q8ind;q

)
. (1)

EJ = 80Ic/(2π) is the junction coupling energy, whereIc is the critical current and
80 = h/2e is the elemental quantum of flux.φij = θi − θj − aij is the gauge-invariant phase
difference along the junctionij (restricted to the interval(−π, π ]). θi is the phase of the
pseudo-wave function describing the state of graini: |9i | exp(iθi), where|9i |2 = ns (ns is
the density of the superconducting couples).aij is related to the vector potentialEA through

aij = 2π

80

∫ j

i

EA · dEx.
ij stand for nearest-neighbour points andp, q run over all the plaquettes in the array.

The current along linkij is related to the phase differenceφij through the Josephson
expression sin(φij ). An alternative description of the currents can be given in terms of mesh
currentsip, defined in each plaquette, which are related to the link currents by

sin(φij ) = (RT)ij ;pip (2)

whereR is the discrete rotational operator. It is anncell × nlink matrix, wherencell andnlink
are, respectively, the number of cells and links in the array.

The self-induced magnetic field has been taken into account in order to provide a realistic
description of the array [9]. This is just the interpretation of the second term in equation (1).
The flux across a plaquette is due both to the self-induced and the external field (parametrized
by the frustration,f = 8ext/80): 8p = 8ind;p + 2πf . 3p;q is the adimensional full induct-
ance matrix, normalized to80/(2πIc). Its size isncell×ncell . 3 connects the induced magnetic
flux through the plaquettes to the mesh currents defined on each cell:

8ind;p =
∑
p,q

3p,qiq (3)

and can be expressed as

3p,q = λ−1
⊥ FFp,q (4)

whereλ⊥ is the adimensional effective penetration depth of the magnetic field [10]:

λ⊥ = 1

2π

80

µ0Ica
(5)
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wherea is the lattice spacing of the array.FFp;q is a form factor matrix related to the geometry
of the array. Details of its computation can be found in [8].

Fluxoid quantization can be expressed as

(Rφ)p = −8p + 2πnp (6)

where8p is the magnetic flux across cellp andnp the number of vortices in that cell.
A further step towards a more realistic description of granular arrays is given by the

introduction of disorder. This can be implemented by:

• Shift of the superconducting sites, which causes a deformation of the plaquettes in the
array: they are not squares, and their area is not the same. Variation in the values of the
cell areas, if the external magnetic field is uniform, results in the dispersion of the fluxes
across the plaquettes: frustration is non-uniform, and matrix3 is affected.
• Dispersion in the values of the critical currents.

As is well known, any vector field can be expressed as the sum of a solenoidal field plus
an irrotational one (with vanishing divergence and curl, respectively). In our case, these two
fields correspond to the site-like and plaquette-like variables (θi ,8p). Let us call the projector
onto the solenoidal (irrotational) fieldPr (Pd ). It is trivially shown thatPd = G(DG)−1D

(whereG andD are the discrete versions of the operators gradient and divergence:G is an
nlink × nsite matrix, wherensite is the number of sites in the array; it can be easily checked
thatD = GT). In a similar way we can definePr = RT(RRT)−1R. Of course,RG = 0,
PrPd = 0,PrPr = Pr , PdPd = Pd , Pr +Pd = 1. The London gauge (E∇ · EA = 0) implies that
(DG)−1Dφ = θ , (Pdφ)ij = θi − θj and(Prφ)ij = −aij .

Applying the operator(RRT)−1R to equation (2) and substituting into equation (3), it is
possible to relate the induced field to the currents along the links. Thus, equation (1) can be
entirely re-expressed in terms of gauge-invariant phases:

H = EJ
(∑

ij

(1− cosφij ) +
1

2

∑
ij,kl

sinφijLij,kl sinφkl

)
(7)

where

L = RT(RRT)−13(RRT)−1R. (8)

Working with equation (1) implies solving a set of coupled non-linear equations. This
is a hard business and one is usually forced to rely on numerical simulations to work out the
problem. There are, however, analytical approximations which are rendered useful in partic-
ular cases; in the next subsection we will comment on the continuous limit of equation (1).
Subsection 2.3 is devoted to the Coulomb gas model, which provides a complementary
description of the arrays.

Throughout this paper we will focus on the sine-like dependence between the super-
conducting current (Ic) and phase (φ) typical of SIS (superconductor–insulator–super-
conductor) or SNS (superconductor–normal–superconductor) junctions. There has been recent
interest, however, in SAS (superconductor–antiferromagnet–superconductor) junctions [11].
SAS junctions are calculated to be purely superconducting provided the phase shift is lower
than a critical value (φ < φc ⇒ Ic(φ) ∝ φ), while forφ > φc the usual Josephson relation is
reobtained,Ic ∝ sin(φ).

2.2. Superconducting thin films

There is a close analogy between Abrikosov vortices in superconducting thin films and vortices
in Josephson arrays, defined by (6). As an example, the field profiles of an Abrikosov vortex
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in a 2D superconductor (calculated from the London equation, with a penetration depthλ⊥
much greater than the coherence length) and a Josephson vortex in a 2D array (obtained from
simulation, with the same penetration depth) show an excellent agreement [12].

This idea suggests the use of the well-known analytical results obtained for the Abrikosov
vortex Gibbs energy in 2D films as an approximation to that of a Josephson vortex in arrays.
Its relevant terms are the energy of a vortex in the absence of magnetic fields and external
currents,U0(x), and the energies due to the interactions with the external field and with the
bias current,Uf (x) andUi(x). Strictly speaking,U depends also on the vertical coordinate,
y. Here, in order to simplify the discussion, we assume that the vortex moves along the central
row of the array(y = 0).

The analytic expressions forU0(x) andUf (x) in terms ofEJ ≡ h̄Ic/(2e) are given by [13]

U0(x) = π ln

(
2L

π
cos

(
πx

L

))
(9)

Uf (x) = −π
2L2

2
f

(
1− 4

(
x

L

)2)
. (10)

x is given in units of the lattice spacing,a. We fixed the origin of the coordinates,x = 0,
at the central column of the array.L is the array dimension in the direction perpendicular to
the flow of the bias current.

A characteristic feature of Josephson arrays which is not present in 2D films is the periodic
structure of the array. This implies that, in order to pass from one cell to the next, the vortex
must overcome an energy barrierEB . In order to take this into account we can consider an
extra component of the energy

Upot (x) = −1

2
EB cos(2πx). (11)

Upot (x) guarantees that there are equilibrium positions for a vortex in the array (dU/dx = 0)
provided that it is not too close to the border.

Let us submit the previous expressions to scrutiny. Equation (9) reproduces qualitatively
the behaviour ofU in the absence of external fields. In figure 1(a) we have plotted the value of
the energy of a vortex placed in the central plaquetteE(x = 0) for arrays with different sizes
(L = 16, 32, 64, 128, 200). The points fit very well to a straight linea+π ln(2L) (a ∼ 0.059).

The dependence onx is shown in figure 1(b), where we plot exp(g(x̃)), with g(x̃) =
((E(x̃) − E(0))/π), versusx̃; x̃ = x/L is a normalized length, ranging from 0 up to
1/2 − 1/L. A perfect scaling is observed. The curve obtained differs from the expected
cosine-like behaviour, while sharing two relevant qualitative features with it: it is convex
and tends to 0 as̃x → 1/2. Note that, thoughE(x̃) = π ln(2L/πg(x̃)), there is no reason
to fear a divergence ofE in the limit x̃ → 1/2. The rightmost column of the array gives
x = (L − 1)/2. The limit x̃ → 1/2 corresponds thus toL → ∞. For x̃ → 0.5, g tends
linearly to 0,g(x̃)→ b(0.5− x̃) and 2L/πg(x̃)→ b/π , which is non-zero.

The effect of frustrationf is shown in figure 1(c). Unlike the behaviour predicted by
equation (10), the energy of a vortex exhibits a parabolic dependence onf : it is minimum for
a given valuefmin and grows asf is increased or decreased. In figure 1(c) we plot the values
of E for two vortices placed in diagonal plaquettes of a 32× 32 array. For sufficiently high
values off the single-vortex configuration (while remaining stable) is no longer the ground
state.

Things change when one takes into account the self-inductance of the array. It can
be conveniently parametrized by the penetration depthλ⊥. Negligible self-inductance cor-
responds toλ⊥ = ∞. As λ⊥ decreases, so does the vortex extension and the effects of the
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Figure 1. (a)E(x = 0): the energy of a vortex placed in the central plaquette of a squareL× L
array versus ln(L); the straight line isE = 0.059 +π ln(2L). (b) exp({E(x̃) − E(0)}/π) versus
x̃ ≡ x/L for L = 200 (•), 128(4), 64 (©), 32 (�) and 16(♦). A perfect scaling is observed.
We also plot the expression predicted in the case of a superconducting film, cos(πx̃) (continuous
line). (c) The effect of frustration: the energy of one single-vortex configuration placed in different
positions in a 32× 32 array: the central plaquette (continuous line) and the leftmost (rightmost)
one in the bottom row (dashed line); the dotted line is the energy of a zero-vortex configuration; the
thick line is the envelope of the previous ones, and corresponds to the energy of the ground state.
(d) The energy of a vortex as a function of its position for a 16× 16 array withλ⊥ = 1. The cells
are ordered from left to right, top to bottom (the leftmost cell on the top row is 0, the rightmost one
on the bottom row is(L − 1) × (L − 1)). We plot the values obtained from simulations(•) and
from the expressionE0 + ECG (dotted line) (ECG is equation (19) withO ≡ (RRT +3)−1, and
E0 is just a constant term); despite all the approximations made in obtaining equation (19) and the
finite-size effects, the relative error between the Coulomb gas results and the exact ones is always
smaller than 1.5%.

array discretization become more and more apparent. Another consequence of the vortex
shrinking is the flattening of the curveE(x) [14]: the vortex extension decreases asλ⊥ does;
the presence of a very reduced vortex only affects the currents and field distribution in the
plaquettes close to it, and the vortex profile attenuates considerably before arriving at the
border of the array. Thus, across most of the array plaquettes (except those near to the border)
the vortex energy is hardly sensitive to its position.

In conclusion, asλ⊥ → 0 the 2D continuous model becomes less and less adequate, and
another approach is required.

2.3. Mapping onto the Coulomb gas model

Hamiltonian (1) can be mapped onto the Coulomb gas model

HCG = (qR − fR)PR,S(qS − fS). (12)
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qR is the occupation index of cellR: qR = 0 means that there is no gas molecule in cellR;
qR = ±1 implies that the cell is occupied by a molecule with charge±1.

In this section we will provide an outline of the reason for this. For a rigorous proof, we
refer the reader to reference [15]. We will approximate the cosine in the Hamiltonian (1) by
the quadratic term (the general case will be discussed below)

1− cos(φij ) ∼ 1

2
φ2
ij =

1

2
(θi − θj )2 − (θi − θj )aij +

1

2
a2
ij . (13)

Due to the orthogonality ofPr andPd , it is possible to decouple the site and plaquette fields.
The summation over links can be expressed in terms of the previously defined operators as∑

ij

φ2
ij = θT ∆θ + (Rφ)T(RRT)−1(Rφ) (14)

where∆ = DG is the discrete Laplacian. All of the information about the thermodynamic
behaviour of the system is enclosed in the partition function

Z ≡
∫ ∏

i

[dθi ] exp

(
− βEJ

2
{θT ∆θ}

)
×
∏
p

[d8p] exp

(
− βEJ

2
{(8− 2πn)TM(8− 2πn)

+ (8− 2πf )TN(8− 2πf )}
)

(15)

whereM = (RRT)−1 andN = 3−1. RRT is a Hermitianncell×ncell matrix whose components
are: RRT

p,p = 4, RRT
p,q = −1, if p andq are nearest-neighbour cells, and 0 otherwise. If

periodic boundary conditions are imposed in all directions, matrixRRT has a zero eigenvalue,
so in order to calculate(RRT)−1 one must take the restriction of the operator to the subspace
where the null eigenvector has been removed.

The integral over the site field gives a constant value:∫ ∏
i

[dθi ] exp

(
− βEJ

2
{θT ∆θ}

)
=
(

2π

βEJ

)o/2
det(∆)−1/2 (16)

whereo is the order of the matrix∆. In general, it is impossible to solve analytically an
integral such as equation (16), and a series expansion around the maximum of the exponent is
usually made.

In order to solve the integral over the plaquette field, it is convenient to do some calc-
ulations. If we introduceyp = 8p − 2πfp, ap = 2π(np − fp), then

(8p − 2πnp)Mp,q(8q − 2πnq) + (8p − 2πfp)Np,q(8q − 2πfq)

= (y − a)TM(y − a) + yTNy

= ξT(M +N)ξ − aTMT(M +N)−1Ma + aTMa (17)

whereξ = y − (M + N)−1Ma. If we define a new operatorO = −MT(M + N)−1M +M
(note that(M−1 +N−1)O = 1), the integral over the plaquette fields is just(

2π

βEJ

)o/2
(det(M +N))−1/2 exp(−2π2βEJ (n− f )TO(n− f )). (18)

We can define an effective Hamiltonian as

Heff = 2π2EJ (qp − fp)Op,q(qq − fq) (19)
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and equation (12) is obtained: the mapping to a Coulomb gas is achieved. Note that the
charge-like variablesqp are exactly the fluxoidsnp.

In the (unrealistic) extreme case ofλ⊥ → 0, the induced field tends to counteract
frustration (8ind → 2π(1 − f ) in the cell where the vortex is placed;8ind → −2πf
otherwise), andφij � 1 [16]. Thus the approximation cos(φij ) ∼ 1/2φ2

ij is reasonable.
For realistic values ofλ⊥, the Hamiltonian (19) (withqp = np) also provides an acceptable

description of the system, as shown in figure 1(d) forλ⊥ = 1.
Now we state the main results obtained through a rigorous development: in the case of

the wire model (similar to that previously solved:H ∝∑φ2
ij ) the phase-like and vortex-like

variables are decoupled, and the partition function can be expressed as the product

Z = ZSWZch. (20)

ZSW is the partition function of the spin waves, and takes into account the quadratic fluctuations
around an equilibrium state.Zch is analogous to the previously obtained Coulomb gas effective
Hamiltonian (equation (19)). We stress that the identity between charge variablesqp and the
fluxoidsnp persists.

If periodic boundary conditions are imposed in all of the directions, the following con-
straints arise:∑

p

qp = 0
∑
p

fp = 0 (21)

where the summations are over all the plaquettes in the array. When working in three or more
dimensions, another constraint must be considered: asqp andfp are defined as curls of a
vector field, their divergence must be zero:

E∇q = 0 E∇f = 0. (22)

In the general case, the potential in equation (13) is usually substituted for with the Villain
potential [17], defined as

Vv(x) = − 1

β
ln

∞∑
l=−∞

exp

(
− β Jv

2
(x + 2πl)2

)
. (23)

Note that both the piecewise-parabolic potential and the cosine (V (x) = cos(x)) are the limits
of the Villain potential in the cases of high and low temperature, respectively (see figure 2).
The partition function obtained from the Villain potential leads to results formally equivalent to
equations (19) and (20). The difference is that now the Coulomb gas Hamiltonian is expressed
in terms of charges (qp) whose relation with the vorticity of the plaquettes (np) or any function
of the initially defined phases is non-trivial. In particular [18],

〈(RV ′)p(RV ′)q〉 = 〈qpqq〉. (24)

The second average is made considering the Coulomb gas Hamiltonian, andqp, qq are the
charge variables in the cellsp, q. The first average is calculated integrating over theφ-
variables, using Villain’s potential, andR is as usual the discrete rotational:

(RV ′)p =
∑
ij∈p

V ′(φij )

where

V ′(φ) =
(

2π
∞∑

l=−∞
exp

(
− βJv

2
(φ + 2πl)2

))−1 ∞∑
l=−∞

e−(1/2)βJv(φ+2πl)2(φ + 2πl). (25)
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Figure 2. The Villain potential (Vv) for different values ofβ: 0.1, 1 and 10 (Jv = 1). In particular,
we have plotted the functiona(Vv(x)− b), takingb = Vv(0) anda = 2/(Vv(π)− Vv(0)). a and
b areβ-dependent. For comparison we have added the curve 1− cos(x) (continuous line). Note
that the piecewise-parabolic function and the cosine are limits ofVv for high and low values ofβ,
respectively.

2.4. Related models

In section 2.1 we have considered the so-calledfrustratedXY model, to which self-inductance
and disorder effects have been added. Thus a rather complex model, containing many of the
features found in real systems, is obtained. Sometimes it is useful to rely on more basic models
that reflect partially that complexity and allow an easier overview on particular aspects of the
problem to be obtained, and/or allow one to benefit from a whole body of intuitions and ideas
about order, stability etc that theoreticians have developed through the years.

• Gauge glass: either in its phase (equation (1)) or vortex (equation (19)) representation,
it is characterized by the uniform distribution of the vector potentialsaij in the [0, 2π ]
interval. In equation (1), this implies that thep-component of theRφ-vector takes any
value between 0 and 8π with the same probability. In equation (19),fp can have any
value within the [0, 4] interval.

This model corresponds to a fully non-uniform flux distribution. It exhibits U(1)
symmetry (is invariant under a global shift of all the phases).

At low enough temperatures, this model undergoes a transition to a phase-correlated
ordered state.
• Chiral glass: in this model, the vector potentialaij can only take two possible values, both

equally probable: 0 andπ . The non-linear component of the Hamiltonian (equation (1))
becomes−EJ cos(φij ) = −EJ cos(θi − θj − aij ) = ±EJ cos(θi − θj ). This model can
be seen as a representation of theXY spin glass with couplingsKij = ±EJ . It is worth
noting that a negative Josephson coupling can arise from pair hopping through a Kondo
singlet, as shown in the strong-coupling limit of the 1D Kondo lattice [19].

In the vortex representation (equation (19)),fp has only a discrete set of possible values.
This model shares a relevant qualitative feature with theXY model with rational values

of f . They are both invariant under two kinds of transformations, exhibiting a continuous
U(1) symmetry, and a discrete one (Zq for theXY model withf = p/q, and a global
reflectionθi →−θi ∀i in the case of the chiral glass).
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At a low enough temperature, this model undergoes a transition whose order parameter
is the chiralityχ =∑ij (θi−θj−aij ) (the sum is taken around the links of each plaquette).
In 3D, gauge glass and chiral glass belong to the same universality class [20]: despite
the differences between the two models, their transitions are characterized by the same
critical exponents. However, in 2D they exhibit different critical behaviours [21].
• Bond dilutionis an extreme case of distribution of the critical currents: they have two

possible values: 0 and a uniqueIc. In 2D, it is suggested to be in the same university class
as gauge glass [22].
• Other proposals are inspired by the physical realizations of disordered superconductors.

For example, a random-pinning Hamiltonian has been suggested in reference [23]:

Hrp = −1

2

∑
p,q

(np − f )G(p − q)(nq − f )−
∑
p

v(p)n2
p (26)

wherep andq run over all the plaquettes in the array. In this Hamiltonian, the flux is
constant over the whole array (reflecting the physical situation of having a uniform applied
magnetic field) and the distribution of the values ofv(p) reproduces the pinning effect
due to array defects.

In 2D, this potential belongs to the same universality class as gauge glass [23].

A summary of the universality behaviour of the different models considered in this paper
is given in figure 3. These results will be commented on in detail in section 5.

Figure 3. Different models commented on in this paper, classified according to their transition
temperature (zero or finite) and their static exponentν. ‘ch g’, ‘g g’ and ‘r.p.p.’ stand, respectively,
for chiral glass, gauge glass and the random-pinning potential defined in reference [23].

3. Review of scaling theory

In this paper we are dealing with the static properties of the JJ (such as phase diagrams
concerning transitions between different phases). However, experiments are usually made
under dynamical conditions (e.g. injecting a bias current and studying theI–V curve). These
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experiments report useful information on the physics of the array: the proximity to a phase
transition gives rise to remarkable features in theI–V characteristics, the appearance of
non-linear resistivity can be related, e.g., to the exponent with which the correlation length
diverges near a transition. This is why it is convenient to briefly review some notes on scaling
theory regardingI–V behaviour in the vicinity of a second-order phase transition. For further
development, we refer the reader to references [24,25].

A second-order phase transition is characterized by the development of long-range
correlations, which can be described in terms of a power divergence of the correlation length
in the vicinity of the transition:

ξ ∼ (T − Tc)−ν . (27)

The relaxation time also diverges as one approaches the critical point. The characteristic
timescale (τ ) is defined as

τ ∼ ξz. (28)

If Tc = 0, however, the relaxation is expected to diverge exponentially asT → 0, which
implies z → ∞: τ ∼ exp(1E(T )/T ), where1E(T ) is the typical energy barrier that a
vortex must overcome to move a distanceξ . The dependence of1E(T ) on ξ is usually
expressed through the introduction of a new exponentψ such that1E ∼ ξψ and

τ ∼ exp(A/T 1+ψν). (29)

The vector potentialA enters in theaij -definition as an inverse length, so it is expected to
scale as the inverse of the relevant length scale,ξ :

A ∼ 1

ξ
. (30)

The electric field is defined asE = −∂A/∂t . Thus, it presumably must scale as
1/(length× time), so

E ∼ 1

ξτ
. (31)

The power dissipated per unit volume isIV/Ld = JE (d is the dimension of the system,
J is the current density andE the electric field).JE scales as energy/(time× lengthd); thus
EJ ∼ KBT/(ξdτ ). From equation (31), this implies

J ∼ KBT

ξd−1
. (32)

From equations (31) and (32) we obtain the scalingansatz

Eξτ ∼ f±
(
Jξd−1

KBT

)
(33)

where± indicates possibly different behaviour above and below the critical point.
Dividing both terms byJξd−1/(KBT ) one obtains

T τξ2−d E
J
∼ g±

(
Jξd−1

KBT

)
. (34)

At very low currents,E is linear inJ ; thus an ohmic behaviour occurs. The linear resistivity
ρlin is defined asρlin = limJ→0E/J ; thusρlin ∼ (T τ)−1ξd−2g±(0), and

Tρlin ∼ ξd−2 exp(−A/T 1+ψν) Tc = 0 (35)

Tρlin ∼ ξd−2−z ∼ |t |ν(z+2−d) Tc 6= 0 (36)
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wheret = T − Tc. Consequently

E

Jρlin
∼ g

(
J

T 1+ν(d−1)

)
Tc = 0 (37)

E

Jρlin
∼ g±

(
J

T |t |ν(d−1)

)
Tc 6= 0. (38)

Equations (37) and (38) show that theI–V (J–E) curve is different at different
temperatures, but all the different curves coincide just on re-scalingI → I/(T 1+ν(d−1)) or
I → I/(|t |ν(d−1)). This gives us a clue as to how to search for vestiges of a second transition
and to determine critical exponents fromI–V curves.

For example, above a given currentInl(T ), theI–V curve is no longer a horizontal line,
and non-ohmic behaviour comes into play. The point of the curve where non-linear behaviour
sets in scales (ford = 2, in theTc = 0 case) as

Inl ∼ T 1+ν . (39)

A new difficulty arises when working with small systems (one is forced to do this when
simulating systems for dimensiond > 2). In this case, finite-size scaling is mandatory.
This just takes into account the fact that the maximum coherence length is reached when
ξ ∼ (T − Tc)−ν is of the order of the system sizeL: ξ ∼ L. The main idea underlying
finite-size scaling is that, as regards length scales, only the ratioL/ξ is relevant. In order
to compare results obtained for those systems, formulae must be corrected to take this into
account. For example, equation (37) must be generalized to

E

Jρlin
∼ g

(
J

T 1+ν(d−1)
, L1/νT

)
. (40)

and equation (39) to

Inl

T 1+ν
∼ g

(
J

T 1+ν
, L1/νT

)
. (41)

If Tc 6= 0, T τρlin ∼ ξd−2 can be read asρlin ∼ ξd−2−z (T can be taken to be a constant
nearTc, while the other parameters are functions ofT −Tc). The finite-size scaling reads now

ρlin ∼ ξd−2−zg±(L1/ν |t |). (42)

Comparison between systems with different lengths,L andL′, leads to

ln(ρlin(L)/ρlin(L′))
ln(L/L′)

= d − 2− z (43)

atT = Tc.

4. The ground-state problem

When studying the ground-state configuration of a superconducting array, an immediate
reference (anot-too-differentsystem whose analytical solution is known) is a continuous
superconducting film. We will first briefly review some basic properties of such a model,
which can be considered as the limit of a discrete array for very low frustration (f → 0). Next
we will consider how discretization makes things change.
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4.1. Superconducting film

The mean-field solution minimizing the Ginzburg–Landau free energy of a thin film is very
similar to that found in 3D [26]. The ground-state configuration is a triangular lattice of
equally spaced vortices, whose areal density isB/80, and their average separation is

√
(80/B).

Fluctuations about the ground state can be worked out by using the London approximation:
outside the vortex core, the amplitude of the superconducting wave function is fixed, and only
the phase fluctuates (this is a reasonable approximation if the vortex size is much smaller than
the average separation between vortices). What one obtains with this approximation is

H = 1

2
J0

∫
d2r

∣∣∣∣∇θ − 2π

80
A

∣∣∣∣2. (44)

Equation (44) can be mapped onto a continuum Coulomb gas of logarithmically interacting
charges [27]. For finiteB, the resulting Hamiltonian can be written as [28]

H = 1

2

∫
d2r d2r ′ (n(r)− B/80)V (r − r ′)(n(r ′)− B/80) (45)

wheren(r) =∑i niδ(r − ri) (ni = ±1 is the vorticity of vortex numberi, andri its position).
Equation (45) is just the continuum limit of equation (12). A continuum film is the limit of a
discrete 2D array when its spacinga→ 0. Since the average number of vortices per plaquette
is f = a2B/80, thea→ 0 limit impliesf → 0.

4.2. The discrete 2D array

How does discretization make things change? In a discrete 2D array two tendencies compete:
vortices tend to organize in triangular patterns but, at the same time, they are trapped in a
periodic potential whose minima are placed at the plaquettes of the array. When the geometry
of the array is incommensurate with a triangular structure (e.g. for square plaquettes) this
competition gives rise to an extremely rich ground-state structure as a function of the array
size and the frustration. In square arrays, for low values off , vortices search for the approx-
imation to a triangular lattice that fits better within the array geometry, and thus the ground-state
configurations depend strongly on the exact value off : they change notably asf changes.

One way of obtaining the ground-state configuration is starting from a triangular vortex
lattice and subjecting it to rotation and shear, so as to adapt it to the square geometry of the
array. In this way, forf = 1/q a Bravais lattice of vortices emerges, characterized by a
periodic structure whose basic cell containsq × q plaquettes [29] (see figure 4). In some
special cases, however, the basic cell is 2q × 2q (currents are spatially periodic, with period
q, but gauge-invariant phases exhibit a 2q-periodicity) [30].

The complexity of determining the ground state is perfectly illustrated in the exhaustive
and rigorous work by Straley and Barnett [30], where different candidate ground states are
exhaustively searched for by first selecting candidates among local minimum configurations,
moving the vortices around in search of lower-energy arrangements, finding via Monte Carlo
simulations competing structures anda posteriori demanding the internal consistency of
the resulting classification scheme and checking systematic regularities of the configuration
properties withf . In this way, a complete classification scheme emerges:

(a) in general, Bravais lattices are a good description for thef = 1/q ground states;
(b) for other values off , the ground state is given by domains corresponding to a Bravais

configuration between which domain walls or narrow bands corresponding to a different
configuration are inserted. For 1/3 < f < 1/2 the structures obtained are made just by
insertingf = 1/3 configuration domains in thef = 1/2 checkerboard configuration.



R374 J C Ciria and C Giovannella

Figure 4. Bravais ground-state configurations forf = (a) 1/2, (b) 1/3, (c) 1/4 and (d) 1/5. Vortices
are represented by black circles.

This results, in most cases, in a diagonal chain of vortices with a staircase-like invariance,
as evidenced by Halsey [29].

In particular, nearf = 1/q the ground state is the configuration for 1/q onto which a dilute
configuration carrying the excess vortices/vacancies is superimposed [31]. In [31], ground
states have been worked out by studying one by one all of the possible vortex configurations
(after discarding the ones that are redundant because of translational and inversion symmetry),
searching that with the minimum energy (a Coulomb gas Hamiltonian is considered) and
checking them by means of slow Monte Carlo cooling from random configurations at
high temperatures. The unbinding of these superimposed vortex arrays occurs at critical
temperatures lower than those characteristic off = 1/q; thus the critical temperature pattern
exhibits a rich structure.

A useful method for identifying the ground states has been proposed by Kolahchi [32],
inspired by the growth of large crystals: local minimum configurations are singled out in a
ladder; then they are replicated in a new ladder, which is added to the initial one, and phases
are allowed to relax. It is found that, in passing from one ladder to the next one, a general rule
of shifting phases applies. Finally the configuration for the square array is obtained. Ground
states are expected to be between the minima so calculated.

Anyway, the process of finding out the candidates for ground states and discriminating
between them is rather cumbersome. Finding the exact ground-state configuration for a given
set of the parameter values is fairly arduous work. This is partly due to the glassy nature of
the system, characterized by a complex structure of metastable states, nearly degenerate in
energy with the real ground state, and by constrained dynamics (the different energy minima
are dynamically disjoint: each of them is unreachable from the others, because that would
require the rearrangement of an infinite part of the vortex lattice). Another serious difficulty
arises from the requirement of consideringq × q arrays so that the ground-state configuration
is commensurate: this imposes a serious computational limit for the simulation of small values
of f . New difficulties arise when trying to take into consideration the magnetic fields induced
by the supercurrents circulating in the array.
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A more general method—other than trial and error—would be highly desirable. One such
method has been worked out in the case of ladders in reference [33]. The symmetry between
the currents flowing along the upper and lower branches of the ladder allows one to map the
system onto a 1D chiralXY model with anisotropy. This model belongs to a general class
of 1D models with spatially modulated structures, such as the Frenkel–Kontorova (FK) one,
which has been exhaustively studied [34]. However, applying the well-known results obtained
for the FK model to the ladder is far from trivial. The equilibrium properties of these 1D
models depend strongly on the convexity of the interaction potential: in the FK model,V is
clearly convex (V (xi, xi+1) = k(xi − xi+1)

2), while the cosine-like potential of a ladder has
a non-convex part. However, it can be proved [35] that only the convex part ofV is relevant
in determining the ground-state configurations, and the ladder ground states exhibit the same
properties as the convex models; thus all the results and techniques previously developed for
these models can be applied to ladders. In reference [35] one such technique, theeffective-
potential method, was applied. It is based upon the study of the transfer matrix of the system
partition function, and allows one to compute the ground states with an arbitrary accuracy.
When applied to the ladder, this method finds a rich ground-state structure as a function of
frustrationf . The vortex densityw(f ) climbs a Devil’s staircase: it is a continuous function,
with a plateau for rational values off . This clearly differs from the behaviour of a 2D array,
wherew(f ) = f everywhere [29]. In particular, the occupation index of a plaquette in the
ladder is given byni = κw(iw + α), α being an arbitrary constant, and the functionκw(x) is
defined on the [0, 1] interval asκw(x) = 1 for x < w and 0 otherwise. Moreover, anisotropic
ladders are considered. The anisotropy is parametrized byJt , which is the ratio between the
vertical and horizontal coupling constants:Jt = EJY /EJX. The ground-state phase diagram
in theJt–f plane is composed of a series of tongues, each corresponding to a different vortex
densityw (see figure 5).

Figure 5. The ground-state phase diagram for a ladder as a function of frustration (f ) and aniso-
tropy (h = Jy/Jx ), obtained by the effective-potential method.w is the number of vortices per
cell. Vortex configurations for simple values ofw are shown in the inset. Courtesy of Mazo, Falo
and Floria [33].

Independently, a different group [36] arrived at similar conclusions. They showed that
the Devil’s staircase varies with the anisotropy parameterJt : for Jt < 0.7, w(f ) shows flat
regions, corresponding to rational values off , connected by smooth differentiable curves. At
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Jt = 0.7 the staircase is complete (there is a step for every rationalf , and the measure of the
curve pieces corresponding to irrationalf is zero). ForJt > 0.7 the staircase is overcomplete
(steps forf = p/q with lowerq increase, and those for higherq shrink; in the limitJt →∞
only integer steps survive).

The effect of the self-induced magnetic field has been studied in reference [16]. The
effective-potential method was used, combined with other techniques, such as root-finding
methods (calculating stable solutions to∂H/∂xi = 0) and dynamical relaxation. In the self-
field, the system presents a behaviour that resembles the Meissner effect: the self-induced field
tends to push the external field out of the array, causing the growth of theω = 0 tongue and
the shrinking of the range of parameters where the Devil’s staircase is observed. However, the
critical field for theω = 0 phase (the frustration above which the configuration is no longer
the ground state) remains lower than1

2 for all of the values of the penetration depth (this has
been analytically checked for the extreme caseλ⊥ → 0). Thus commensurate phases with
vortices are always clearly visible in the phase diagram and the Devil’s staircase structure is
maintained for any value ofλ⊥.

4.3. Stability

An appealing question is that of the robustness and stability of the equilibrium configurations
under variation of the external parameters. It provides relevant information on the energy
landscape of the system and its dynamical behaviour (constrained dynamics, slow relaxation
processes etc). Stability analysis can be related to depinning, which occurs when a given static
vortex configuration loses its stability as a result of variation of the external current, the applied
magnetic field etc [37]. On the other hand, the loss of stability of the zero-vortex (w = 0)
configuration as frustration is raised starting atf = 0 has been studied as a guess at the
mechanism of field penetration [38]. Furthermore, remarkably the study of the stability of the
static states has been recently proved to be relevant to the understanding of such an attractive
dynamical phenomenon as row switching [39]. Row-switched (RS) states are characterized by
the motion of vortices along well-localized channels in the array: the rest of the rows remain
in the superconducting state. Thus two different regions can be clearly distinguished in the
array: ‘switched rows’ (S) exhibiting a non-zero voltage, and ‘quiescent rows’ (Q), with zero
voltage. For given values off andβc there exists a current rangeiext ∈ (imin, imax)where row
switching occurs. The upper current limitimax is shown to be given by the loss of stability of
the superconducting state in aQ-region: starting from a given RS state, as the injected current
increases there is a moment when vortices penetrate aQ-region; this results in a new RS state
and eventually, fori = imax , in the disappearance of the RS phenomenon. (The authors of
[39] argue that the lower current limitimin is due to a completely different mechanism, namely
retrapping, which explains the dependence of RS on the damping parameterβc.)

A static configuration is characterized by∂H/∂φij = 0 for everyφij . Furthermore, if
the second-derivative matrixK, given byKij ;kl = ∂2H/∂φij ∂φkl , is positive definite, the
configuration is stable. In the case of Hamiltonian (1), matrixK is just

K = Cos+RT3−1R (46)

whereCos is a diagonalnlink × nlink matrix whose(ij, ij) component is justEJ cos(φ∗ij )
(φ∗ij is the gauge-invariant phase shift corresponding to an equilibrium configuration). This
result permits us to understand the effect of self-inductance on the stability of a given vortex
configuration. In the limitλ⊥ → ∞, screening is negligible and thusK = Cos. Let us
start from a stable configuration at a given value off , where all the phases are such that
0 < φij < π/2. Thus, all the components ofK are positive, andK is positive definite. Asf
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varies there may be a moment when one of the phases reaches its maximum valueφij = π/2;
at this point,K is no longer positive definite (detK = 0) and the configuration becomes
unstable. This behaviour has been pointed out by several authors for a ladder [33, 40]: once
the supercurrent in one link reaches its maximum value, no change in the field can be sustained
by an increase of the currents and the vortex structure becomes unstable, so the system relaxes
to a new vortex configuration.

The effect of self-inductance on stability comes through the matrixRT3−1R. It is a real,
symmetric, positive-definite matrix. In the limit of a very strong screening (λ⊥ → 0) the
self-induced field is able to counteract the external one, and the resulting equilibrium phases
areφij ∼ 0 [16]; thusCos is also positive definite and any vortex configuration is stable. For
finite values ofλ⊥, the expected effect is the increase of the range off -values where any vortex
configuration is stable. This was explicitly checked for ladders [16] and 2D arrays [38] (for
the case of a ladder, see figure 6).

Figure 6. The border between stability and instability regions in the parameter space for the extreme
cases of one single vortex (black points) and thew = 1/2 configuration (rhombi) in an isotropic
ladder. In the first case we have considered a 128-cell ladder. We defineλ⊥c(0) as the penetration
depth below which a configuration is stable atf0 = 0, andfc as the value of the frustration below
which a configuration is no longer stable in the limit of no inductance (λ⊥ → ∞). For a con-
figuration with one single vortex,fc = 0.1175± 0.000 65 andλ⊥c (0) = 1.812± 0.018; in the
w = 1/2 case,fc = 0.215± 0.001 andλ⊥c (0) = 1.197± 0.006. Note that, unlike the behaviour
of a 2D array, in a ladder with no self-inductance effects, there exists a critical value of the field
for the stability of each phase: forf0 < fc(ω) the phaseω is no longer stable. Courtesy of Mazo
and Ciria [16].

The stability of a given configuration has recently been studied by considering a dynamical
algorithm in reference [37], where similar results (in theλ⊥ → ∞ case) were obtained. The
argument used in this reference can be applied to a system with non-negligible self-inductance:
starting from an equilibrium configuration [φ∗], a small perturbation is added to the phases:
φ∗ij → φ∗ij + αij . The dynamical equations of the array are, in a matrix expression [8],

βcφ̈ +Rcφ̇ + ic Sin +RT3−1Rφ +Aiext + 2πRT3−1Rf = 0. (47)

Hereβc,Rc andic are diagonalnlink×nlink matrices, introduced so as to allow some dispersion
in the values of capacitances, resistances and critical currents.A is annlink × nsite non-
symmetric matrix, andSin is a diagonal matrix whose(ij, ij) component is justEJ sin(φ∗ij ).
From equation (47) the perturbation evolves as

βcα̈ +Rcα̇ +Kα = 0 (48)

whereK is defined in equation (46). Reference [37] concludes that the stability of the solutions
occurs if and only if the stiffness matrixK is positive definite, independently of matricesβc,
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Rc and ic. As expected, the ‘statical’ and ‘dynamical’ criteria for stability are exactly the
same. Provided that a phase configuration is nearly enough an equilibrium one, any algorithm
(minimizingH or letting the system evolve following the dynamical equations) will result in
the same final state.

5. Phase diagram

As commented on in the introduction, one of the features that make high-Tc superconductors
especially hard to deal with is the strong effect of thermal fluctuations and defects. For example,
the perfect (no defect) type-II superconductor phase diagram (see figure 7) with the Meissner–

(a)

(b)

Figure 7. (a) The mean-field phase diagram of a type-II superconductor. (b) The phase diagram
of a 3D type-II superconductor with strong thermal fluctuations. Courtesy of Fisher, Fisher and
Huse [24].
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Abrikosov vortex lattice and normal phase is no longer valid [24]. Strong thermal fluctuations
make this diagram change drastically. Part of thef –T plane is occupied by a vortex fluid
phase. In this phase there is a tendency to local pinning of vortices, but the pinning field
strongly fluctuates with a finite correlation length. The system can be described in terms of
moving, fluctuating vortices. This is a fully disordered phase, and thus is not separated from
the normal phase (no local pairing) by a proper transition, but rather by a smooth crossover,
which is placed near the mean-fieldfc2-line. In normal and vortex fluid phases the Lorentz
force due to any applied current makes the flux lines move, producing a non-zeroV . At
lower T , however, a transition to a state with vanishing resistance occurs: defects can pin
vortices, impeding their movement. This zero-resistance state is referred to as vortex glass. It
is characterized by:

• as mentioned, vortices being pinned to the lattice defects, andR = 0;
• the positions of the defects being random, and thus there being no long-range order in the

vortex lattice (for dimensionsd < 4).

The vortex liquid–vortex glass transition line lies very close to the upper critical field
in conventional low-Tc materials. The liquid phase occupies a large part of thef –T phase
diagram for highly anisotropic materials, such as Bi–Sr–Ca–Cu–O. The transition line is of the
form fg ∼ (1− T/Tc)n, wheren strongly depends on the material under consideration: for
cupratesn ∼ 3/2 at high temperatures and rapidly varies with decreasing temperature [41],
while for cubic(K,Ba)BiO3 superconductorsn remains constant at 3/2 over three decades of
T -values [42].

At even lowerT , the bulk superconductor is able to expel the applied magnetic field
completely: the system is in the Meissner phase.

Simulations and experiments on Josephson junction arrays are of great utility for the
comprehension of such a complex phase diagram. An example of the successful use of a JJA
system to reproduce the behaviour of bulk high-Tc superconductors is related to the order of
the critical transitions. In fact, while in clean (perfectly ordered) superconductors the vortex
lattice–vortex fluid transition is (supposedly) of first order, for strong enough disorder the
vortex glass–vortex fluid transition becomes continuous. This behaviour is reproduced in
Josephson arrays: in 3D ordered arrays the superconducting transition occurs through a first-
order melting of the vortex lattice [43], while a high enough level of disorder is seen to destroy
this first-order transition, transforming it into a continuous one [44]. In particular, the Meissner
transition in zero applied field in a high-Tc superconductor is widely accepted now to be in the
same universality class as the 3DXY model [45]. This picture is supported by simulations of
the lattice London superconductor model, whose Hamiltonian is defined as

H =
∑
i, Eµ

{
U(θi+Eµ − θi − λ−1

0 ai, Eµ) +
1

2

∑
�
(∇ × a)2

}
(49)

whereU is the (adimensional) Villain potential,λ0 is the bare screening length and
∑
�

runs over all the plaquettes in the array. Finite-size scaling near the Meissner transition is
performed on both static quantities (the magnetic field correlation function) [46] and dynamic
ones (applying equations (42), (43) to theI–V curve) [47]. The results are consistent with a
continuous transition with the same exponentν as the 3DXY model:ν = νXY = 2/3.

In this section we will focus on the effects of temperature (T ), disorder (x), the applied
magnetic field (f ) and anisotropy (η).

Hereafter, by disorder we implicitly mean the bond dilution:x is the fraction of diluted
bonds. We stress again that, though dealing with static quantities, the experimental study of
superconducting systems often involves dynamic measurements. These can supply extremely
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useful information on the static properties of the system (such as the coherence length and
critical exponents). Thus at some points we will refer to dynamic behaviour in order to
connect theoretical predictions with experimental observations.

5.1. TheT -axis (f = x = 0)

A resistivity transition occurs atTc, which belongs to the Berezinskii–Kosterlitz–Thouless
transition universality class [48].Tc separates regimes of lowT (there are no free vortices,
and zero-current resistance is strictly 0) and highT (free vortices cause a non-zero resistance
for any finite current). A trace of this transition is found experimentally in the change of the
slope in theI–V curve. TheI–V curve is of the typeV ∝ I a(T ). At Tc, a(T ) abruptly jumps
from aT→Tc− = 3 (belowTc, an applied current, provided that it is high enough, can induce
vortex unbinding) toaT→Tc+ = 1 [49].

5.2. Thex–T plane (f = 0) (x is the fraction of diluted bonds)

Along thex-axis, the relevant transition occurs at the percolation threshold (xp). At this point,
the state of the system is characterized by an infinite cluster of superconducting junctions,
exhibiting a fractal structure.

Forx > xp there are only isolated finite superconducting clusters, and resistive behaviour
is found for any finite current.

For x < xp a transition to a resistive state may be induced either by an applied current
or by increasing the temperature. Though a strict theoretical study of the statics of the
system excludes injected current, experimental conditions usually imply working with external
currents, and their effects must be taken into consideration in order to understand the results
correctly. We will give an overview of the effects of currents. Two questions are in order:
Which is the value of the injected current forcing resistive behaviour? Which are the exponents
characterizing this current-induced transition?

For everyx < xp the injection of a current above a given valueic leads to a resistive
transition, where the superconducting coherence length is expected to scale asξ ∼ (i− ic)−νI
(we writeνI so as to make a distinction from theT -induced transition exponent). There is some
controversy as regards the value ofic. A finite ic could be an artifact of finite-size systems,
and would vanish asL→∞ [50]. However, it has been argued [51] that non-linearities can
cause a true non-zeroic. In this case,ic is expected to vanish atxp asic ∼ (xp − x)v, where
v = vp(d − 1) (vp being the percolation exponent); in 2D,v = 4/3 [51,52].

We can follow now a reasoning similar to that of section 3: ific 6= 0 the typicalt-scale
for relaxation scales asτ ∼ ξz, and equation (31) suggests againE ∼ (i − ic)a, with

a = (z + 1)νI . (50)

Numerical simulations in 2D suggesta = 2.4(2) andνI = 1.05(5) [53]. These values
could be universal critical exponents for 0< x < xp. These results show a satisfactory
agreement with the predictions for granular high-Tc materials:a = t + 1= 2.3 (wheret is the
conductivity exponent of a mixture of resistors and insulators; in 2D,t = 1.3) [54]. Different
values ofa have been proposed: reference [55] concludes thatz = 0.9, implying a somewhat
lower value ofa: a = 1.9. On the other hand,a ∼ 3 was reported in [50]. The previous
a-values have been obtained for 0< x < xp. Just atxp, ic is zero, and the power-law exponent
seems to be around 2 [51,53]. Atx = 0 (a perfectly ordered array),v ∼ √i2 − 1 (i = I/Ic).
A power series expansion aroundIc indicatesv ∼ (I − Ic)1/2, thus givinga = 1/2.

What about the effect of temperature? Forx = xp the transition temperature becomes
0, and the power-law exponent of thev–i curve is around 2 [51, 53], a similar value to that
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due to the injected current. Thus current and thermal effects are difficult to distinguish.
Further analytical and numerical effort is required in order to clarify the critical behaviour
of v. The coherence length diverges asξ ∼ T −νT , as happens in theXY model. At
x = xp the linear resistivity in 2D behaves as exp(−b/T ). Thisψ = 0 value suggests (see
equation (35)) that the energy barrier is constant or diverges logarithmically asT decreases.Eb
has been calculated to beEb = 0.91 [53], though logarithmic behaviour cannot be completely
excluded. The critical exponentνT has been calculated through scaling relations, either
determining the crossover between the linear and non-linear stretches of theI–V characteristics
(equation (39)), or by finding an adequate scaling so thatE/(Iρlin) curves obtained for different
T merge (equation (37)) [53]. This has been found to beνT = 1.3(3), in accordance with
the value predicted by the theory of the correlation length of the dilutedXY model atxp
(ν = 0.98–1.03) [56].

5.3. Thef –x combined effect

Providing a reasonable description of the processes occurring in real superconductors implies
dealing with disorder. Disorder strongly modifies the previously described pictures [84]. For
example, for specific values of frustration the order–disorder phase transition is of first order
(e.g.f = 2/5 in 2D); disorder makes this transition continuous [57].

The combined effect of frustration and disorder provokes the appearance of a vortex glass
phase, similar to that described for bulk superconductors: the state of the array is given by a
disordered array (no long-range order) of pinned vortices (thusρ = 0).

Dimensionality is a critical parameter for the existence of the vortex glass phase. Theor-
etically [24] this phase is stable in 3D, not in 2D.

Let us start at 3D. The main predictions of Fisher, Fisher and Huse [24] are: there is a
finite-temperature transition to the vortex glass phase (Tg > 0); the values of the exponentsν
andz are in the rangesν ∼ 1–2,z ∼ 4–7.

Numerical studies of theI–V curve in the gauge glass and chiral glass models [20, 58]
and finite-size scaling of static quantities [59] lead to the following results in the limits of no
self-inductance (λ⊥ → ∞) and strong screening (λ⊥ → 0) (see again figure 3):

• In the case of neglected screening, the transition to the vortex glass phase occurs at a finite
temperature (T = 0.93± 0.05). The critical exponentνT is 1.4± 0.3. As far as the
value of the dynamic exponentz is concerned, finite-size scaling (equation (43)) gives
z = 3.1(1) both for the gauge glass and chiral glass models [20], while Regeret al obtain
a different value:z = 4.7± 0.7 [59].

• In the limit of very strong screening, the critical temperature seems to be 0. The exponent
ν, obtained from equations (40) and (41), is 1.05± 0.1. AsTc = 0, the relevant dynamic
exponent isψ , with a valueψ ≈ 0, indicating that energy barriers between neighbouring
minima remain constant or diverge logarithmically asT → 0.

The first direct evidence of a low-temperature vortex glass phase in a disordered super-
conductor was obtained for YBCO thin films [60]. Since then, numerous experimental results
on YBCO films have confirmed the theoretical predictions [61–63]: for thick enough films
(thicknesst > 1000 Å), the values obtained forν and z are, respectively, in the ranges
1.1–1.9 and 4.4–6. Recent experiments on cubic(K,Ba)BiO3 superconductors [42] give
ν = 1± 0.2, whilez = 5.0± 0.6, both exponents remaining constant along thef –T vortex
glass transition line.



R382 J C Ciria and C Giovannella

In 2D systems the main predictions of the FFH theory for the vortex glass phase are: the
transition occurs atTg = 0, ν ∼ 2; andρlin ∝ exp(−(T /T0)

p) with p = 1 +9ν > 1 (from
equation (35)) [24].

Numerical simulations in 2D using both the gauge glass and a random-pinning Hamiltonian
(equation (26)) show, in accordance with the experiments, thatTg = 0 andν ' 2 [23]. The
linear resistivity is calculated to scale asTρlin ∼ exp(−a/T ) (thusp = 1).

Recent simulations with the 2D chiral glass model [21], in accordance with the gauge glass
model, show that the scaling analysis of theI–V curve is consistent with a phase transition
at T = 0. At this limit, ρlin has an Arrhenius behaviour: lnρlin ∼ −a/T . The correlation
length diverges asξ ∼ T −νT , with νT = 1.1(2), as determined by using both equations (37)
and (39). Thus 2D chiral glass and gauge glass are in different universality classes. A deeper
examination of the model throws some light on the nature of the transition. Unlike the case
for the gauge glass model, and reflecting the fact that there is an extra reflection symmetry, the
zero-temperature transition of the 2D chiral glass is characterized by two correlation lengths:
ξc, corresponding to chiral glass order, andξs , which indicates the phase correlation length.
They have different critical exponents:νc ∼ 2 (just as in the gauge glass model) andνs ∼ 1.
Thus resistivity measurements probe the phase correlation length.

What about experiments? A 2D vortex glass transition was found in ultrathin (one unit
cell thick) YBCO films [62, 64]. The current at which non-linear resistance has its onset
was measured to scale with temperature asInl ∼ T 3±0.3, in coincidence with the theoretical
predictionν = 2. The scaling expression (37) was verified provided thatρlin behaves as
ρlin ∼ exp(−a/T p), with p ' 0.6. Such a value ofp (versus the predictionp = 1 +9ν > 1)
is hard to explain in terms of a classical description (thermal activation of correlated bundles
of vortices), and rather suggests that quantum effects (e.g. quantum tunnelling of vortices
through energy barriers) are relevant [65]. Recently, experimental results fully consistent
with the predictionsTg = 0, ν = 2 andp > 1 have been obtained for highly anisotropic
Tl2Ba2CaCu2O8 thin films subjected to high magnetic fields (so as to guarantee full penetration
in the sample) [66].

What about intermediate-thickness superconductors? In reference [67] the vortex glass
transition in YBa2Cu3O7−δ films whose thickness ranges from 18 up to 1000 nm is studied.
All of them show a clear scaling collapse in theE/(J |t |ν(z+2−d)) versusJ/(T |t |ν(d−1)) curves
(see equations (36) and (38)), giving clear evidence of a second-order transition. The results
for the thicker films are consistent with the 3D theoretical predictions.Tg is seen to decrease
with the thickness, but for the thinner films (t ∼ 18–75 nm) the behaviour departs from the
predictions. The authors of [67] postulate the need for an anisotropic 3D vortex glass theory
in order to explain the physics of films with a thickness intermediate between those for the 3D
bulk and real 2D systems. An anisotropic scaling is proposed, with two different correlation
lengths (ξ⊥ andξ‖, respectively perpendicular and parallel to thec-plane), characterized by
different static exponentsν⊥ andν‖: ν‖ = αν⊥ with α < 1.

We turn now to the model obtained by bond dilution of equation (1). Here the level of
disorder is tunable by selecting the fraction of diluted bonds (x). Asx varies, different regions
of thef –x–T phase diagram are explored.

At zero dilution (x = 0) the ground state is described by a periodic pinned vortex lattice
whose cell array is in generalq×q. Two transitions compete asT varies. On the one hand, the
Kosterlitz–Thouless mechanism of vortex unbinding leads to the superconducting transition
atTS . Another relevant temperature isTVL, corresponding to the melting of the vortex lattice
due to domain wall excitations. Forf = 0, 1/2 and other low rational values off , the two
transitions are very close:TVL > TS .

In the absence of an external field (f = 0), Hamiltonian (1) reproduces the dilutedXY
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model, which is known to be a superconductor forx < xp [56].
If frustration is present, there is a thresholdxVL for lattice ordering belowxp [68]. It has

been recently argued [22] that disorder leads to the separation of the two transitions:

• The superconducting phase persists forx < xs(f ). At xs(f ), Tc becomes 0.
• Within a rangexs(f ) < x < xVL(f ), vortex lattice ordering persists.
• AbovexVL(f ), and before the percolation threshold is reached (xVL(f ) < x < xp(f )),

there is a region characterized by the lack of long-range order, which is a candidate for
accommodating a vortex glass phase. In 2D a vortex glass occurs in this region only on
theT = 0 line.

Let us consider rational values of the frustrationf = p/q. xVL corresponds roughly
to the percolation threshold of aq × q lattice, which is reached far below the single-bond
percolation threshold (xVL < xp). As vortex lattice disordering provokes the suppression
of phase coherence,xVL is an upper limit for superconductivity (xs 6 xVL). The picture is
completed by considering the dependence ofxVL on f . For low-order rational frustration,
if f ′ < f , this implies thatq ′ > q; thus the unit cell corresponding tof ′ is greater than
that corresponding tof , and xVL(f ′) occurs beforexVL(f ). Consequently, one expects
xVL(f

′) < xVL(f ). A sketch of the different phases is shown in figure 8.

Figure 8. A schematic phase diagram of a diluted 2D JJA. S, N and VG stand for the
superconducting, normal (ordered vortex lattice) and vortex glass phases. We stress that, in 2D, the
vortex glass phase exists only atT = 0. Courtesy of Benakli, Granato, Shenoy and Gabay [22].

Numerical work verifies this scheme for a bond-diluted, triangular JJA atf = 1/2 and
T = 0 [22]. The stability of the ordered phases is studied following the domain renormal-
ization group method [69] through a recently developed optimized algorithm [70]. First of
all, the ground state is determined for a realization of disorder in a system of a given length
L. Then a change is imposed on the boundary conditions, and the energy of the resulting
configuration is related to that of the initial ground state:

• On imposing antiperiodic boundary conditions, the energy difference1Eap = Ea−Ep is
a measure of the phase coherence (and thus indicates the existence of a superconducting
state): it is finite in a phase-coherent state, 0 otherwise.
• On imposing periodic boundary conditions, the energy difference1Erp = Er − Ep is a

measure of the energy cost for a domain wall in the vortex lattice. It gives an indication
of the vortex lattice order.

1Eap and1Erp should be averaged over for different realizations of the disorder for each
x-value. The averaged results are referred to as [1Eap](x) and [1Erp](x). [1E](x) constant
or increasing withL implies the stability of the ground state. For small values ofx, [1E](x)
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increases with the size of the array: long-range coherence (vortex lattice order) exists. For
large values ofx, [1E](x) decreases with the size of the array, giving evidence of a lack of
long-range coherence (vortex lattice order). The change in the behaviour asL increases gives
the value ofxs (xVL). Forf = 1/2, T = 0, xs is measured to be smaller thanxVL. Stability
analysis atxVL < x < xp shows that the vortex glass phase occurs only atT = 0.

An intriguing question is that of under which circumstances (array geometry, level and
kind of disorder) disorder may endanger even the existence of an ordered vortex phase. For
f = 0, an ordered phase survives for low enough disorder [71]: for a disorder levelσ < σc
this phase exists forT < Tc(σ ) (hereσ stands for positional disorder). Forf = 1/2 (a fully
frustrated Josephson junction array) the system exhibits two symmetries: a continuous one
(U(1)) and a discrete one (Z2), related respectively to a‘KT-like’ order and an‘Ising-like’
order. The persistence of an ordered phase in the presence of positional disorder in a square
array has been studied forf = 1/2 [72]; it is claimed that the ordered phase persists for
weak disorder. However, recently Gupta and Teitel [73] arrived at the opposite conclusion for
f = 1/2 on the basis of the analogy with the random-field Ising model. Their conclusion is
that, in the thermodynamic limit (the size of the system tending to infinity), the critical disorder
is σc = 0: any amount of finite disorder destroys the‘Ising-like’ order; thus the ground-state
vortex lattice would always be disordered for any non-zero value ofσ . The non-zeroσc
obtained in the previous reference ([72]) would be a finite-size effect: the correlation length,
though finite, would be longer than the system under simulation, leading to the illusion of a
divergingξ , and thus of a disorder–order second-order transition.

5.4. Thef –T plane: glassiness in the absence of disorder

A relevant problem is that of the superconducting critical lineTc(f ). It has been suggested
(by Teitel and Jayaprakash, in reference [29]) that the superconducting temperature is a very
discontinuous function off : Tc(f ) 6 1/q, with the result thatTc → 0 for irrational values
of f .

The Hamiltonian (1) reduces, if self-inductance effects are negligible, to the uniformly
frustratedXY model. Its low-temperature state is characterized by two kinds of broken
symmetry: the U(1) symmetry (‘KT-like order’), associated with superconducting phase
coherence, plus a discrete symmetry. Basically, for rational values of the frustrationf = p/q
the discrete symmetry is known to be Zq . This added discrete symmetry influences the nature
of the order–disorder phase transition. Asq has a singular dependence onf , the nature of
the phase transition varies withf in a rather complicated way. Forf = 1/2, the discrete
symmetry is Z2: interchanging the vortex and antivortex leaves the ground state invariant. For
f = 1/3, for example, the discrete symmetry group is Z2 × Z3 [74]. The transition to the
ordered phase is strongly influenced by the energy cost of domain walls [57]: forf = 1/3 a
binding of two walls is not energetically favourable, and the transition is continuous; however,
for f = 2/5 the lowest-energy walls tend to bind. When this binding is taken into account, the
free energy of the system at the critical temperature becomes discontinuous; thus the transition
is first order.

An intriguing problem is that of the appearance of glassy behaviour for irrationalf -
values. Unlike the case in previous subsection, where a vortex glass state resulted from the
combined effect of disorder and frustration, here we deal with perfectly ordered arrays, where
the Hamiltonian exhibits no intrinsic disorder. These glassy systems can be referred to as
structural glasses, and their glass transition is still far from being satisfactorily understood [75].
Josephson arrays arise, again, as experimental systems especially appropriate to the study of
complex condensed matter problems. It was claimed on the basis of Monte Carlo simulations
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(see Halsey, in reference [29]) that, in the limit of an irrationalf ∗ = (3−√5)/2, an ordered
2D array undergoes a glass transition to a superconducting disordered vortex state at a finite
temperatureTg 6= 0. This result was partially supported by experiments on superconducting
wire networks atf ∗ [76]. However, this result is not directly applicable to a granular JJA: each
wire is connected to many other ‘first neighbours’ (any horizontal wire is nearest neighbour to
any vertical one, and vice versa). The transition undergone by this system would correspond
to that of a higher-dimension JJA (we stress that dimensionality is crucial to the existence of
a non-zeroTg).

On the other hand, numerical simulations of the dynamics of an ordered 2D resistively
shunted junction array showed a scaling relation (equation (37)) which suggested a zero-
temperature glass transition [77]. The critical exponentν = 0.9 ± 0.2 was found to be
different to that obtained for systems with disorder (ν ∼ 2), reflecting the different nature of
the ground states of ordered and disordered arrays.

New arguments have been added to theTg(f
∗) = 0 (dynamic) versusTg(f ∗) 6= 0 (Monte

Carlo) controversy [78]. In reference [78], a Monte Carlo simulation of the Coulomb gas dual
to the uniformly frustrated 2D JJA is performed. At a given temperatureTc (coinciding with
Halsey’sTg) a first-order transition to an ordered vortex structure, consisting in successive
diagonals which are completely filled, completely empty and partially filled with vortices,
occurs. In the successive Monte Carlo runs, vortices are free to move along the partially filled
diagonals (thus leading to phase incoherence) down to a pinning temperatureTp(f ). Tc is
slightly dependent onf . The characterization of theTc > T > Tp(f ) region as a disordered,
glassy vortex state in [29] was an artifact, induced by the specific algorithm used.

5.5. The effect of anisotropy

A parameter frequently used when modelling 3D superconductors is anisotropy. Some granular
high-Tc materials can be described as a series of stacked planar arrays (e.g., Bi2Sr2CaCu2O
[79]). The critical currents in the direction perpendicular to the planes are lower than those in
the in-plane directions. A phenomenological free-energy functionF , inspired by simulations
on 3D Josephson arrays, was proposed in reference [80]. It explains how the first-order
superconductivity transition smooths, becoming continuous due to disorder. The anisotropy
(η) was defined byiC⊥ = i0/η2, whereiC⊥ is the critical current in the direction perpendicular
to the planes (resistances are increased by the same value). The in-plane critical currents are
of the order ofiC‖ ∼ i0. Disorder (D) is modelled through random distribution of the critical
current values. The resulting phase diagram is shown in figure 9. Forη = ∞, different planes
are decoupled, so the system reduces to a set of independent 2D arrays. Forη = 0, due to
the extremely strong inter-plane coupling, vortices are rigid lines, and the system reduces to
an equivalent 2D one. The superconducting transition in 2D is second order. For intermediate

Figure 9. The disorder–anisotropy phase diagram. Courtesy of Jagla and Balseiro [80].
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η-values the system is truly 3D. The authors of [80] postulate the existence of two different
continuous transitions, characterized by the depinning of independent vortices (occurring at
Ti) and the percolation transition (atTp, whose order parameter is the probability of having
a vortex path starting from one lateral side of the array and finishing on the other). For high
enough disorder, two regions can be distinguished:

• For smallη, in-plane and inter-plane coherence are lost, respectively, atTi andTp (Ti < Tp)
(the loss of phase coherence, and thus that of superconductivity, is detected by there being
non-zero resistivity and, equivalently, the helicity modulus going to zero).
• For largeη, in-plane and inter-plane coherence are lost; the vortex structure percolates at
Tp < Ti (in-plane and inter-plane coherence are lost atTi).

For lowD, within an intermediateη-range the two continuous transitions coincide, merging
into a first-order one. As regards the external fieldf , scaling arguments are used to reduce
the 3D parameter space (D, η, f ) to a 2D space, whose variables area = η2f andb = D2f .
Thus, the phase diagram for any value off can be referred to that for a referencef ∗: the
properties of the system at (D1, η1, f1) (f1 = αf ) are the same as those at (

√
αD,
√
αη, f ∗).

5.6. Large junctions

Another question deserving mention is that of 2D (large-area) Josephson junctions. It
arises when the junction dimensions are larger than the magnetic field penetration depth
(L > λ), as happens in trilayer junctions like YBa2Cu3Ox /YBa2Cu3Ox /YBa2Cu3Ox [81]
and Bi2Sr2CaCu2O8/Bi2Sr2Ca7Cu8O20/Bi2Sr2CaCu2O8 [82]. In this case, the junction state is
given by a phaseφ which varies continuously along and across the junction. A phase diagram
of a 2D junction has been proposed in reference [83], as a function of temperature and disorder
(here disorder is due to the random magnetic fields arising from quenched flux loops trapped
in the bulk superconductor). The relevant order parameters arez = 〈cos(φ)〉 (measuring long-
range order in the phase) and a glass order parameter1 (the glassy state is characterized by a
slow relaxation). The replica-symmetry-breaking method was applied to study the free energy
of the system, and four different phases were found:

• At high temperatures thermal fluctuations dominate, and we have a disordered (z = 0,
1 = 0) phase.
• In the presence of strong disorder, lowering the temperature leads to a glass phase

(z = 0,1 6= 0)
• In the presence of weak disorder, as temperature diminishes first a Josephson phase occurs

(z 6= 0,1 = 0).
• At even lower temperature (weak disorder) a first-order transition leads to a new phase

where Josephson order and glassy behaviour coexist (z 6= 0,1 6= 0).

6. Conclusions

Josephson junction arrays have proved to be very useful as available model systems for
providing an understanding of the properties of high-Tc superconductors and, in general, for
exploring the physics of complex non-linear systems.

In fact, JJAs are suitable systems for exhibiting glassy behaviour, which may be induced
either by intrinsic disorder (positional disorder, critical current dispersion) or by external
perturbation (such as a magnetic field). For high-Tc materials, the strong effects of thermal
fluctuations and defects render study extremely difficult. The possibility of both simulating
and fabricating arrays where the nature and the amount of disorder are fixed with an acceptable
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degree of precision, and the sophisticated experimental facilities available nowadays, allow a
detailed study of arrays under perfectly controlled conditions. Results can be extrapolated to
granular high-Tc superconductors, where an intrinsic Josephson effect is present.

The phase diagram of a JJA as a function of temperature (T ), disorder (x) and the applied
magnetic field (f ) is commented on in the light of recent results. The main benchmarks are
as follows:

• Along thef -axis (T = x = 0), we study the ground states, and the stability of the
equilibrium vortex configurations. In 2D arrays, the vortex density of the ground state
(the average number of vortices per plaquette) isw(f ) = f . The vortex configuration
results from competition between the natural tendency of vortices to arrange in triangular
lattices (as happens in superconducting films) and the need to accommodate to the periodic
potential of the array (with a minimum at each plaquette). In a ladder, however,w(f )

climbs up a Devil’s staircase, which persists for any value of the magnetic penetration
depthλ⊥.
• Along theT -axis, the relevant temperature is that characterizing the Kosterlitz–Thouless

transition.TKT separates the phases with no free vortices and uncoupled vortices.
• Along thex-axis, the relevant parameter is the percolation threshold (xp), where the system

has an infinite cluster of superconducting junctions which exhibit a fractal structure.
• In the x–T plane, for eachx < xp there is a critical temperature which ranges from
TKT for x = 0 down toTc = 0 atx = xp. This transition leaves its mark in theI–V
curve, and can be identified under experimental conditions. Care must be taken, however,
because the effect of the injected current is also relevant: current-induced transition is
characterized by a value ofν similar to that due to thermal fluctuations. Moreover, it is
not clear whetheric (the current leading to resistive transition) is different from zero; if
ic = 0, current-induced effects would appear unavoidably.
• Thef –x combined effectleads to the appearance of the vortex glass phase, characterized

by the pinning of vortices to randomly placed lattice defects. Due to vortex pinning, the
resistivity is zero. Moreover, as the positions of the defects are random, there is no long-
range order in the vortex lattice. The critical temperature for the transition to the vortex
glass phase is finite for 3D and zero for 2D, as seen both in theoretical models and in
experiments. For superconductors with an intermediate thickness, an anisotropic scaling
is proposed. The appearing of the vortex phase depends on the value of the frustration,
and also on the geometry of the array.
• In the f –T plane, both the nature and the critical temperature of the transition to the

superconducting phase show a rather involved dependence onf . The critical temperature
(Tc(f ) 6 1/q) is a highly discontinuous function of the frustration, with value zero for
irrational f . The nature (first or second order) of the transition is strongly influenced
by the discrete Zq symmetry associated with the frustratedXY model withf = p/q;
variation off leads the discrete symmetry group to vary in a complicated way.

We also consider the problem of‘structural glasses’: transition to a disordered state
is found in perfectly ordered arrays. Dimensionality is again a critical feature (in 2D the
temperature for the transition to the glassy phase seems to beTg = 0).
• We also consider the effects of theanisotropy, both in the nature of the ground states and in

the general disorder–temperature–anisotropy phase diagram. According to the anisotropy
level, a material is equivalent to a stack of independent planar systems (η � 1), to an
effective 2D one (η � 1), or to one showing a truly 3D behaviour for intermediateη.
Thus anisotropy affects the effective dimensionality of the system and thus the order of
its transition to the disordered phase.
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